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A theoretical account is given of experiments performed by Saffman & Taylor (1958) 
in which a fluid drives a liquid out of a long straight channel of very small thickness 
formed between two parallel sheets sealed at the edges. The penetrating fluid forms 
a long finger, whose sides are parallel to the edges of the channel, and which has a 
rounded tip, which advances with unaltered shape a t  a constant speed U .  The theory 
correctly predicts the shape of the finger as a function of the ratio h = (asymptotic 
width of finger)/(width of channel) and gives the relation between h and U ,  which 
is in good agreement with experiment. I n  particular it shows that, as U increases 
from zero to infinity, h steadily decreases from 1 to 0.5. 

1. Introduction 
During the course of an investigation concerning the penetration of a fluid into a 

porous medium, Saffman & Taylor (1958, 1959) carried out a remarkable experiment, 
for which (as they pointed out) their theoretical account was in several respects in- 
complete. It appears (see Wooding & Morel-Seytoux 1976) that the experiments still 
await explanation. It is the object of this paper to give a theoretical basis for their 
observations. 

Saffman & Taylor constructed a Hele-Shaw ceIl of dimensions 91 x 2-54 x 0.08 em 
which they filled with oil. By suitable means they applied water under pressure a t  
one end of the cell, as if to drive out the oil ahead of the water. Whilst some oil was 
swept out in this fashion, the water also penetrated the cell as a finger having a rounded 
advancing tip and long sides parallel to the edges of the channel (see figure 1) .  Photo- 
graphs were taken showing the shape of the meniscus profile between the oil and the 
water, viewed through the narrow thickness of the cell. Essentially similar results 
were found when other pairs of fluids were used. From their measurements, Saffman 
& Taylor found that the asymptotic width of the finger far from the advancing tip 
was never less than half the width of the channel; for very slow rates of advance, 
almost all the cell contents were swept out, and as the speed of the finger was increased 
(by increasing the pressure applied to the penetrating fluid) the width steadily 
approached the limiting value of one half of the channel width. 

I n  the next section, an abbreviated version of the Saffman-Taylor theory is given 
together with a description of the way in which the experimental results diverge from 
its predictions. Subsequent sections give an account of the new treatment of the 
problem and the comparison with experiments which confirm it. Throughout the 
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FIGURE 1 .  The co-ordinate system. HOK is the outline 
of the finger moving to the left with speed U .  

paper the term ‘profile’ will refer to the strongly curved region 
between the fluids, which is observed as the edge of the finger. 

of the interface 

2. The Saffman-Taylor theory 
Figure 1 shows the typical appearance of the finger of the advanc-ng fluid (defined 

by the profile HOK) moving from right to left with speed U a t  the tip 0, into the cell 
whose edges are AB and CD and whose narrowest dimension lies perpendicular to 
the plane of the paper. It was found that the finger is symmetrical with respect to 
the centre-line MON.  Saffman & Taylor discuss the problem in conventional Hele- 
Shaw terms; that is, they regard the motion as two-dimensional and consider velocities 
which describe the motion averaged across the thickness of the cell. With the origin 
of co-ordinates placed as shown in figure 1 ,  the mean velocity is described by the 
components u(x,  y) and v(x, y), parallel respectively to the x and y axes, which are 
fixed to the channel. These velocities are related to a potential function 4 and a stream 
function 3 by the usual equations 

v = - = - -  84 a$ 
ay ax‘ 

Far ahead of the finger, the mean velocity is taken to be 7. Saffman & Taylor 
define the ratio h equal to HKIBC, that is the asymptotic width of the finger divided 
by the width of the channel. They choose a unit of length equal to half the channel 
width. Noting the experimental fact that the velocity in the liquid between the menis- 
cus and the edge of the channel is zero very far from the tip, it follows from con- 
tinuity that 

v = AU. (2.1) 

Saffman & Taylor expand the complex variable 

2 = x+iy  

as a series of exponential functions of the complex potential 

(r) = $ + i$ 
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of the form (for the co-ordinate system of figure 1) 

The imaginary part of this equation is 
W 

y = - $/ V - C A ,  exp ( - nnqi/ V )  sin (w$/ V ) ,  (2.3) 
n=l 

and Saffman & Taylor argue that, on the meniscus, pressure is constant, i.e. qi is a 
constant (zero). Also, 

Y = -$/K (2.4) 

which expresses the fact that the normal liquid velocity must equal the normal 
component arising from the motion of the finger, which has a profile which does not 
change shape with time. On A B  and CD, which are streamlines, $ is equal to T V 
respectively. Substitution in (2.3) gives a Fourier series 

m 

n = l  
-$ /U = - $ / V -  AILsin(nn$/V), - V < $r < V ,  

nnA, = 2(1 - A )  ( -  1)". 
from which 

Hence from (2.2) and the condition w = 0 when z = 0 

z =  w 2( 1 - A )  In (1 + ;-'W/F') 

V n  

The parametric equation of the meniscus is obtained by putting qi = 0 and $ = - Uy 
in this equation, so that from the real part, after straightforward simplifications, 

Saffman & Taylor showed that the result (2.6) agrees very well with the observed 
profile when h is equal to 0.5, which is the limiting value for high velocities. However, 
they point out that, for other values of A, the profile deviates steadily from that ob- 
served. Indeed as A approaches unity, the profile (2.6) tends to a straight line a t  right 
angles to the abscissa, whereas the actual profile remains strongly curved. 

To the problem of the relation between U and A, Saffman & Taylor were unable to 
give any answer. Their analysis (summarized above) gave no indication of any re- 
striction on A to values exceeding 0.5, nor did it suggest any physical relation be- 
tween h and U. 

3. The equation of the meniscus profile 
From the failure of the analysis outlined in the preceding section to describe the 

general behaviour of the profile, it  seems clear that the physical conditions imposed 
by Saffman & Taylor have to be abandoned. In searching for a replacement, methods 
based on Fourier series, hodograph techniques and the superposition of singularities 
were explored without any appropriate criterion becoming apparent. 
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Further progress became possible after careful observation of the flow of liquid very 
close to the profile. As the profile advances, thin sheets of liquid are left on the surfaces 
of the cell. When very small particles of dirt appeared in these thin liquid regions close 
to the profile, it appeared that the particles moved along a normal and either eventually 
crossed the profile, entering the liquid ahead of it, or were left behind on the cell 
surface. Larger particles present in this region upstream, but very near the profile, 
did not cross the profile into the thin sheets of liquid but appeared to be pushed aside, 
again along a normal to the profile. In both cases the extent of tangential motion was 
difficult to judge, but seemed to be small very close to the profile. For particles which 
were in the liquid some distance away from the profile, the main component of velocity 
was parallel to the axis of the cell. 

The velocity distribution in the liquid region near the strongly curved interface 
is obviously very complicated and different from that assumed in conventional Hele- 
Shaw flow. However, the observations suggest that in this region some streamlines 
are present which cross the profile at right angles. In  a plane perpendicular to the cell 
surfaces, the meniscus has an approximately semicircular section and therefore, as it 
moves forward, the liquid between it and the surface is contained within a narrowing 
channel which finally becomes the thin liquid sheet on the cell surface. The pressure 
of the gas causing the motion of the profile acts along the normal in the plane of the 
cell, and it would thus be expected that (relative to the moving profile) the liquid 
adhering to the surface as the profile moves over it could instantaneously be regarded 
as moving along the normal, with no tangential velocity component. At every point 
on the expanding profile, there is in effect a viscous drag acting along a normal across 
it, and it is this feature which is decisively different from the usual examples of Hele- 
Shaw flow round obstacles. 

It appears difficult to find a completely satisfactory argument by which the choice 
of boundary conditions to be applied in the Hele-Shaw treatment of this problem can 
be justified, principally because the behaviour of the fluid near the profile is so com- 
plicated in detail. However, a result in striking agreement with experiment has been 
found, namely that the profile is such that, if R is the radius of curvature at  a point 
on the curve where the gradient is tan 8, then 

R sin 0 = constant. 

In  spite of considerable effort, a satisfactory justification of this relation has not been 
found. 

(3.1) 

Equation (3.1) can be written 

where 

and the suffix denotes differentiation with respect to x, and u is a positive constant. 
This equation may be integrated with the result 

q = (eax-  1)-1 

so that, as x tends to infinity, q tends to zero. A further integration gives 

exp ( - &m) = cos (Buy + h ) .  
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The constant b must be zero since y is zero when x is zero. Also, when x tends to 
infinity, the value of 2y must tend to the limiting value of the width of the finger, 
namely 2h. This is so i fa  is equal to nlh. We thereforeobtainfortheprofiletheequation 

exp - cos - = 1.  (1;) (z) (3.3) 

In  $ 6  we shall show that this equation reproduces very closely the experimental 
results. 

Two further remarks may be made here. It will be noticed that (3.3) differs from 
the result (2.6) in that h replaces (1 - A )  as the divisor of nx. Secondly, if we define new 
variables 

the equation for the profile is 

eScos?j = 1 (3.4) 

and the edges of the channel occur a t  7 = _+ 7r/2h. In these co-ordinates, all the profiles 
are reduced to a single curve (3.4) irrespective of the position of the edges of the 
channel. All the observed profiles can be reduced to a single curve by uniform magni- 
fication of the axes. 

4. The velocity field 
TO find the velocities round the finger, it will be convenient to regard the profile as 

at  rest with respect to the axes and the upper and lower faces of the cell in motion 
from left to right in figure 1 with velocity U and modify the Hele-Shaw theory accord- 
ingly. If s,(~, y, z )  and sy(z, y, z )  are components of velocity in the liquid, and u and 
v as before are the corresponding mean velocities, with the customary assumption of 
quadratic dependence on z for sz and sy, we find 

S, = U+6(U-u)(4Z2-2~) /42~,  

sY = - ~ v ( ~ z ~ - z ; ) / ~ z ; ,  

where the total thickness of the cell is z,,. Substitution of these expressions in the hydro- 
dynamic equations and the assumption that z0 is extremely small compared with 
physically significant lengths in the x, y plane gives the equations for the pressure p :  

2 = 12,u(u-u)/z;, 
ax 

g = - 12pv/z;, 

where ,u is the viscosity of the liquid. The relation between the pressure and the 
potential function Q, is thus 

p = 12p( ux - Q,,/z;. (4.1) 

Since the finger is a t  rest, the liquid in the region between H and K very far from 
the tip will be moving to the right with velocity U ,  whilst at  large negative values of 
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FIGURE 2. The 5 and r planes: the lettering corresponds to that in figure 1. 

x it will be moving to the right with velocity U - 77, i.e. U (  1 - A ) .  We have to find $ 
and 9 which satisfy these conditions, together with the condition that 9 is zero on 
the profile given by (3.3); this is the condition that no liquid crosses the interface. 

The key to the solution of the problem by conformal mapping was eventually seen 
to be the construction of a transformation which mapped the liquid region BAMOH 
in figure 1 on to a half-plane. This is accomplished in the following way. Consider a 
complex variable 

{ =  a+ip  (4.2) 

defined by the equation 

exp 6) = i + 5. 

The real and imaginary parts of this equation are 

(4.3) 

Hence the profile (3.3) corresponds to a = 0,  that is the imaginary axis in the 5 plane 
(see figure 2 ) .  The origin 0 in the x, y plane is also the origin in the 6 plane, and the 
points A and M at - 00 coalesce in the point ( -  1 , O ) .  On A B  in figure 1, y = 1 and 
evidently from (4.4) and (4.5) 

/3/( 1 + a) = tan (7r/2A).  

Thus in figure 2 the line BA with angle BAO equal to (7r/2A) corresponds to the edge 
of the channel. The region BAMOH occupied by liquid is thus mapped into the 
polygon BAOH in the 5 plane. By means of a Schwarz-Christoffel transformation 
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this may be mapped into the upper half of the T plane with A and M at the origin and 
0 at T = 1 (see figure 2 ) .  The appropriate transformation is 

where k and 1 are constants and B is the incomplete beta function. Since when T is 
zero 5 is equal to - 1 ,  we find I = - 1 .  Also, when T = 1 , C  is zero and so 

(from the properties of the beta function). Combining these results we obtain 

We now require a mapping of the complex potential w = q5 +i$ on to the T half- 
plane. This is easily found, since on MOH the stream function $ is zero, while on BA 
+ is evidently equal to U (  1 - A) .  If we take q5 equal to zero a t  0, then the appropriate 
transformation is 

7 =  exp[ 7cw ] 
U(1  - A )  * 

(4.9) 

This equation and (4.8) give the required relation between w and z from which the 
features of the flow can be derived. 

A consideration of the velocities gives a result required later. By differentiation of 
(4 .8 )  with respect to z and use of (4.9) we find 

u - i v  = U (  1 - A )  (2hk)-l (4.10) 

Now, as x tends to infinity, u tends to U and v to zero; hence asymptotically we must 
have 

w - u z + c ,  (4.11) 

where c is a constant and the remaining terms are vanishingly small. When this is 
substituted in (4 .10) ,  we find from the leading term 

1 - T)* enz/2A. 

( -  1 ) * ( 1  - A )  (2Ak)-le-"C/2AU = 1.  
Hence 

a result needed in the evaluation of the pressure. 

(4.12) 

(4.13) 

5. The A, U relation 
To complete the solution of the problem we have to relate the velocities to the 

driving force in the physical problem, which is the pressure in the advancing finger. 
Saffman & Taylor show that experimental conditions are such that the pressure p1 
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in the penetrating fluid can be regarded as practically uniform everywhere; this is 
obviously the case if the fluid is air. We now apply this condition to the theory of f 4. 

The pressure p ,  in the liquid near H far from the origin will be less than p 1  owing 
to the action of surface tension y. We assume that the effective radius of curvature 
(which is solely in the y, z plane) is simply &zo, corresponding to a meniscus with semi- 
circular cross-section. Thus 

P m  = P1- 2Y/ZO. (5.1) 

At the origin, there are two principal radii of curvature to be considered. From the 
result (3.3) we find that the radius in the x, y plane is 

rl = 2h/7rr. (5.2) 

The radius of curvature r2 in the x, z plane is of order ?po, and, since the surfaces of 
the cell are moving with velocity U in the x direction above the stationary tip of the 
finger, it is reasonable to expect that viscous drag will reduce r2 from its value $2, 

expected in static conditions. We therefore put 

withm > 1.  
If we ignore the contribution to normal stress arising from the viscosity and the 

velocity gradient (this can be shown to be small compared with the term due to 
curvature in the x, y plane) we obtain for the pressure po at the origin 

r2 = zo/2m, (5.3) 

PO = p1- y(ril + r;'). 

p ,  -po = 2y(m - l)/zo +7ry/2h. 

(5.4) 

By subtraction we obtain an expression for the pressure drop 

(5 .5)  

For the apparatus used by Saffman & Taylor, the ratio of the terms on the right- 
hand side of this equation is 

mzo 2 0.05 
4h(m- 1) h(m- 1)' 

Unless m is very close to unity (which seems unlikely from the considerations which 
are discussed in $ 7 ) ,  this ratio is small. Moreover, this ratio is proportional to zo, 
which is ideally of negligible magnitude. This suggests that it may be sufficient to 
write as an approximation 

1391 -Po = 2y(m- W O .  ( 5 4  

2y(m-- 1)/.0 = 12/I [ (~x-$) , - (~x-$)o l /z~ .  (5.7) 

From (4.1) we then obtain 

The real parts of (4.11) and (4.13) give 

IT 

and (Ux - $)o  is by definition zero. If we define 
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h 
0.50 
0.52 
0.54 
0.56 
0.58 
0.62 
0.66 
0.70 

F(h)  
00 

34.403 
16,417 
10.444 
7477 
4.541 
3.099 
2-250 

TABLE 1. 

h 
0.74 
0.78 
0.82 
0.86 
0.90 
0.94 
0.98 
1.00 

F(h)  
1.695 
1.305 
1.016 
0.793 
0,611 
0.454 
0.295 
0 

substitution in (5.7) gives 

(It should be recalled that zo is the ratio of the thickness of the cell to half its width, 
which is adopted as the unit of length.) 

We now assume that, to a good approximation, m is independent of U .  Then (5.8) 
relates h and the dimensionless group (,uU/y), which is the result we require. It will 
be seen from the values of F(h)  in table 1 that, when h is 0.5, U is infinite and, when 
h is 1, U is zero. These are the limiting values experimentally observed, and we now 
turn to a detailed comparison with experiment. 

6. Experimental results and comparison with theory 
In  order to show whether (3.3) correctly describes the profile, photographs of its 

shape were required. Accordingly, apparatus with the same dimensions as that used by 
Saffman & Taylor (1958) was constructed. This proved to be far from straightforward, 
since clamping the plastic sheets (forming the surfaces of the cell) on to the rubber 
spacers (forming the edges) a t  intervals introduced periodic slight variations in 
thickness of the cell which revealed themselves as regular variations in the width of 
the finger. Eventually these difficulties were overcome and profiles were obtained 
having very long sides parallel to the edges of the channel, like those illustrated by 
Saffman & Taylor. 

The channel was filled with a corn oil (specific gravity 0.916, viscosity 68.55 centi- 
poise, surface tension 27.7 dynes/cm) which was dyed blue for ease of viewing. This 
was displaced in the cell by air under pressure. Photographs were taken of the profile 
and enlargements produced, from which accurate measurements were easily made, 

In  figures 3 (plate 1 )  and 4 the experimental results are compared with theory. 
Figure 3 is a composite photograph made in the following way. An enlargement of 
the photograph of the profile of the widest finger ( A  = 0.77) was made, and then 
enlargements of profiles for h = 0.67 and 0-54 were made such that for each the 
limiting width of the finger was equal to that in the photograph for h = 0.77. A plot, 
marked by crosses alone, of the theoretical expression (3.3) was then made, again 
with the same limiting width. These four positive transparencies were then brought 
into register, and the positive shown in figure 3 was made. It will be seen that the 
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FIGWEE 4. Profile calculated from (3.3), - . Observed profiles: 0% h = 0.54, 0.67, 0 .77;  
0, h = 0.88. Curve calculated from (2.6) for h = 0.88, ---.  

three experimental curves are virtually coincident, and the crosses lie over the com- 
mon curve. Close examination reveals slight discrepancies in the positions of the 
three curves. Also, the different widths of the channel, arising from the three different 
degrees of enlargements, are visible. Measurement shows that these widths are 
proportional to (0-54)-l, (0.67)- l  and (0.77)-l as pointed out at  the end of 3 3. 

These results have been replotted in figure 4, in which the position of the three 
virtually coincident curves has been indicated by single points to avoid confusion. 
The solid curve is the theoretical expression, and is in excellent agreement with the 
experimental observations. However, for h = 0.88, which corresponds to a very much 
slower speed of advance of the finger, there is a perceptible departure from the theory. 
This is undoubtedly partly due to the changes which occur very slowly in the thin 
film of liquid left on the surfaces of the cell after the passage of the tip; the film gra- 
dually thins near the profile and thickens slightly towards the centre-line of the cell. 
Similar drainage effects were noticed by Saffman & Taylor (1958). Also, for values 
of h approaching unity, the requirement that cell thickness is negligible compared to 
the width of the region occupied by liquid is not satisfied far downstream where the 
finger almost fills the cell. For comparison, the dotted curve shows the prediction for 
h = 0-88 derived from their result (2.6). 

The relation between h and U given by (5 .8 ) ,  with the assumption that m is constant, 
has been compared with the experimental results given by Saffman & Taylor (1958). 
In  addition, a few observations were made as a check on their data. All these results 
have been used in figure 5 ,  where the experimentally observed value of (,uU/y) 
corresponding to a particular value of h is plotted against the theoretical value of 
F(h) .  It will be seen that the results lie near a straight line, which supports the hypo- 
thesis that m is effectively constant. The gradient of the line in figure 5 is 2.36, and 
for the apparatus the slope predicted by (5.8) is 0 . 6 0 6 / ( m  - 1) from which it follows 
that the appropriate value of m, is 1.26. The scat,ter in results is greatest for large 
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FIGURE 5 .  The relation (5 .8)  between F(h)  and U compared with experiment: 

0, Saffmen-Taylor results ; x , new observations. 

values of U ,  when h approaches 0.5 and F is then a rapidly varying function of A, 
so that small errors in h correspond to large changes in F .  

7. Discussion 
This account of the Saffman-Taylor experiment rests on two crucial arguments 

neither of which is self-evident. The first is equation (3.1) which expresses the con- 
stancy of R sin 8 along the profile, and for which no satisfactory explanation has been 
found. 

The second important hypothesis is the assumed constancy of m, which expresses 
the change in the physically dominating curvature of the meniscus at  the tip from 
its value (2 /2 , )  far downstream. In support of this assumption, the following com- 
ments may be put forward. Far from the tip, viscous drag due to motion of the cell 
surfaces acts in a direction perpendicular to the plane containing the maximum cur- 
vature. At the tip, on the axis of symmetry, the viscous drag is parallel to this plane 
and we should expect a marked change in curvature there. It seems plausible to expect 
that the difference between no motion at  the tip (curvature 2/2, )  and motion, however 
slight, which leaves a layer of liquid on the cell surfaces (when the curvature is 2m/z, )  
will be substantial. In  other words, it seems likely that m does not tend to unity as U 
decreases towards zero. How m might change quantitatively as U increases is less 
obvious, but it seems very reasonable to expect that, for an appreciable range of 
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velocities, m would change very little. Whatever the value of these qualitative con- 
siderations, it  certainly appears that the results in figure 5 indicate that m is approxi- 
mately constant. 

A further comment may be made about the relationship between m and U .  As an 
approximation, we could regard the shape of the cross-section of the advancing finger 
in the plane at right angles to the surface of the cell as similar to that viewed from 
above through the surfaces. The expression (5.2) gives the value 2hl7r for the radius 
of curvature in the plane of the surface, and we may imagine a similar relation to hold 
in the other principal plane of curvature. Since in this plane h is very close to unity, 
this would suggest that the radius of curvature is (2/n) (tz,,), that is, rn equals &r. 
Whilst this estimate is very crude, it gives some support to the assumption that m 
differs appreciably from unity. 

I am especially grateful to my colleague Mr G. C .  Terry whose skill and patience 
overcame the considerable difficulties encountered in the construction of the 
apparatus, and who helped in taking measurements and many photographs. My 
attention was drawn to this interesting problem by Professor Saffman, to whom I 
should like to express my acknowledgements. I am also indebted to the referees, who 
pointed out the inadequacy of the physical arguments which had suggested to me 
that Rain 6 is constant on the profile (Q 3). 
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FIGTJRIG  3. Three superimposed photographs (at different enlargemcnt~s)  of  prof i les  corresponding
to h = 0.54, 0.67 and 0.77. The crosses correspond to cqua,tion  (3.3).
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